
M A N N I N G

Vladimir Khorikov

Principles, Practices, and Patterns

P
ro

te
c
ti
o
n
 a

g
a
in

s
t

re
g
re

s
s
io

n
s

(c
h
.
4
)

R
e
s
is

ta
n
c
e
 t
o

re
fa

c
to

ri
n
g

(c
h
.
4
)

F
a
s
t
fe

e
d
b
a
c
k

(c
h
.
4
)

M
a
in

ta
in

a
b
ili

ty

(c
h
.
4
)

D
e
fi
n
e
d
 b

y

D
e
fi
n
e
d
 b

y

U
n
it
 t
e
s
ts

In
te

g
ra

ti
o
n
 t
e
s
ts

M
a
x
im

iz
e

M
a
x
im

iz
e

M
a
x
im

iz
e

M
a
x
im

iz
e

M
a
n
a
g
e
d

d
e
p
e
n
d
e
n
c
ie

s

(c
h
.
8
)

U
n
m

a
n
a
g
e
d

d
e
p
e
n
d
e
n
c
ie

s

(c
h
.
8
)

T
e
s
t
a
c
c
u
ra

c
y

(c
h
.
4
)

F
a
ls

e
 p

o
s
it
iv

e
s

(c
h
.
4
)

F
a
ls

e
 n

e
g
a
ti
v
e
s

(c
h
.
4
)

T
a
c
k
le

d
 b

y

T
a
c
k
le

d
 b

y

M
o
c
k
s

(c
h
.
5
)

S
h
o
u
ld

 n
o
t
b
e
 u

s
e
d
 f
o
r

S
h
o
u
ld

 b
e
 u

s
e
d
 f
o
r

D
o
m

a
in

 m
o
d
e
l
a
n
d

a
lg

o
ri
th

m
s

(c
h
.
7
)

C
o
n
tr

o
lle

rs

(c
h
.
7
)

C
o
v
e
r

C
o
v
e
r

C
o
m

p
le

x
it
y

(c
h
.
7
)

C
o
lla

b
o
ra

to
rs

(c
h
.
2
)

H
a
v
e
 l
a
rg

e
 n

u
m

b
e
r

o
f

In
-p

ro
c
e
s
s

d
e
p
e
n
d
e
n
c
ie

s

(c
h
.
2
)

O
u
t-

o
f-

p
ro

c
e
s
s

d
e
p
e
n
d
e
n
c
ie

s

(c
h
.
2
)

H
a
v
e
 h

ig
h

A
re

A
re

A
re

A
re

U
s
e
d
 i
n

D
a
m

a
g
e
 i
f
u
s
e
d
 i
n
c
o
rr

e
c
tl
y

C
ha

pt
er

 M
ap

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

Unit Testing:
Principles, Practices,

and Patterns
VLADIMIR KHORIKOV

M A N N I N G
SHELTER ISLAND

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Acquisitions editor: Mike Stephens
20 Baldwin Road Development editor: Marina Michaels
PO Box 761 Technical development editor: Sam Zaydel
Shelter Island, NY 11964 Review editor: Aleksandar Dragosavljević

Production editor: Anthony Calcara
Copy editor: Tiffany Taylor

ESL copyeditor: Frances Buran
Proofreader: Keri Hales

Technical proofreader: Alessandro Campeis
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296277
Printed in the United States of America

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

 To my wife, Nina

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

v

brief contents
PART 1 THE BIGGER PICTURE ..1

1 ■ The goal of unit testing 3

2 ■ What is a unit test? 20

3 ■ The anatomy of a unit test 41

PART 2 MAKING YOUR TESTS WORK FOR YOU...........................65
4 ■ The four pillars of a good unit test 67

5 ■ Mocks and test fragility 92

6 ■ Styles of unit testing 119

7 ■ Refactoring toward valuable unit tests 151

PART 3 INTEGRATION TESTING..183
8 ■ Why integration testing? 185

9 ■ Mocking best practices 216

10 ■ Testing the database 229

PART 4 UNIT TESTING ANTI-PATTERNS...................................257
11 ■ Unit testing anti-patterns 259

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

vii

contents
preface xiv
acknowledgments xv
about this book xvi
about the author xix
about the cover illustration xx

PART 1 THE BIGGER PICTURE ..1

1 The goal of unit testing 3
1.1 The current state of unit testing 4
1.2 The goal of unit testing 5

What makes a good or bad test? 7

1.3 Using coverage metrics to measure test suite quality 8
Understanding the code coverage metric 9 ■ Understanding the
branch coverage metric 10 ■ Problems with coverage metrics 12
Aiming at a particular coverage number 15

1.4 What makes a successful test suite? 15
It’s integrated into the development cycle 16 ■ It targets only the
most important parts of your code base 16 ■ It provides maximum
value with minimum maintenance costs 17

1.5 What you will learn in this book 17

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

CONTENTSviii

2 What is a unit test? 20
2.1 The definition of “unit test” 21

The isolation issue: The London take 21 ■ The isolation issue:
The classical take 27

2.2 The classical and London schools of unit testing 30
How the classical and London schools handle dependencies 30

2.3 Contrasting the classical and London schools
of unit testing 34
Unit testing one class at a time 34 ■ Unit testing a large graph of
interconnected classes 35 ■ Revealing the precise bug location 36
Other differences between the classical and London schools 36

2.4 Integration tests in the two schools 37
End-to-end tests are a subset of integration tests 38

3 The anatomy of a unit test 41

3.1 How to structure a unit test 42
Using the AAA pattern 42 ■ Avoid multiple arrange, act,
and assert sections 43 ■ Avoid if statements in tests 44
How large should each section be? 45 ■ How many assertions
should the assert section hold? 47 ■ What about the teardown
phase? 47 ■ Differentiating the system under test 47
Dropping the arrange, act, and assert comments from tests 48

3.2 Exploring the xUnit testing framework 49
3.3 Reusing test fixtures between tests 50

High coupling between tests is an anti-pattern 52 ■ The use of
constructors in tests diminishes test readability 52 ■ A better way
to reuse test fixtures 52

3.4 Naming a unit test 54
Unit test naming guidelines 56 ■ Example: Renaming a test
toward the guidelines 56

3.5 Refactoring to parameterized tests 58
Generating data for parameterized tests 60

3.6 Using an assertion library to further improve
test readability 62

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

CONTENTS ix

PART 2 MAKING YOUR TESTS WORK FOR YOU.................65

4 The four pillars of a good unit test 67

4.1 Diving into the four pillars of a good unit test 68
The first pillar: Protection against regressions 68 ■ The second
pillar: Resistance to refactoring 69 ■ What causes false
positives? 71 ■ Aim at the end result instead of
implementation details 74

4.2 The intrinsic connection between the first
two attributes 76
Maximizing test accuracy 76 ■ The importance of false positives
and false negatives: The dynamics 78

4.3 The third and fourth pillars: Fast feedback
and maintainability 79

4.4 In search of an ideal test 80
Is it possible to create an ideal test? 81 ■ Extreme case #1:
End-to-end tests 81 ■ Extreme case #2: Trivial tests 82
Extreme case #3: Brittle tests 83 ■ In search of an ideal test:
The results 84

4.5 Exploring well-known test automation concepts 87
Breaking down the Test Pyramid 87 ■ Choosing between black-box
and white-box testing 89

5 Mocks and test fragility 92

5.1 Differentiating mocks from stubs 93
The types of test doubles 93 ■ Mock (the tool) vs. mock (the
test double) 94 ■ Don’t assert interactions with stubs 96
Using mocks and stubs together 97 ■ How mocks and stubs
relate to commands and queries 97

5.2 Observable behavior vs. implementation details 99
Observable behavior is not the same as a public API 99 ■ Leaking
implementation details: An example with an operation 100
Well-designed API and encapsulation 103 ■ Leaking
implementation details: An example with state 104

5.3 The relationship between mocks and test fragility 106
Defining hexagonal architecture 106 ■ Intra-system vs. inter-
system communications 110 ■ Intra-system vs. inter-system
communications: An example 111

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

CONTENTSx

5.4 The classical vs. London schools of unit testing,
revisited 114
Not all out-of-process dependencies should be mocked out 115
Using mocks to verify behavior 116

6 Styles of unit testing 119
6.1 The three styles of unit testing 120

Defining the output-based style 120 ■ Defining the state-based
style 121 ■ Defining the communication-based style 122

6.2 Comparing the three styles of unit testing 123
Comparing the styles using the metrics of protection against
regressions and feedback speed 124 ■ Comparing the styles using
the metric of resistance to refactoring 124 ■ Comparing the styles
using the metric of maintainability 125 ■ Comparing the styles:
The results 127

6.3 Understanding functional architecture 128
What is functional programming? 128 ■ What is functional
architecture? 132 ■ Comparing functional and hexagonal
architectures 133

6.4 Transitioning to functional architecture and output-based
testing 135
Introducing an audit system 135 ■ Using mocks to decouple tests
from the filesystem 137 ■ Refactoring toward functional
architecture 140 ■ Looking forward to further developments 146

6.5 Understanding the drawbacks of functional architecture 146
Applicability of functional architecture 147 ■ Performance
drawbacks 148 ■ Increase in the code base size 149

7 Refactoring toward valuable unit tests 151
7.1 Identifying the code to refactor 152

The four types of code 152 ■ Using the Humble Object pattern to
split overcomplicated code 155

7.2 Refactoring toward valuable unit tests 158
Introducing a customer management system 158 ■ Take 1:
Making implicit dependencies explicit 160 ■ Take 2: Introducing
an application services layer 160 ■ Take 3: Removing complexity
from the application service 163 ■ Take 4: Introducing a new
Company class 164

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

CONTENTS xi

7.3 Analysis of optimal unit test coverage 167
Testing the domain layer and utility code 167 ■ Testing the code
from the other three quadrants 168 ■ Should you test
preconditions? 169

7.4 Handling conditional logic in controllers 169
Using the CanExecute/Execute pattern 172 ■ Using domain
events to track changes in the domain model 175

7.5 Conclusion 178

PART 3 INTEGRATION TESTING....................................183

8 Why integration testing? 185
8.1 What is an integration test? 186

The role of integration tests 186 ■ The Test Pyramid
revisited 187 ■ Integration testing vs. failing fast 188

8.2 Which out-of-process dependencies to test directly 190
The two types of out-of-process dependencies 190 ■ Working with
both managed and unmanaged dependencies 191 ■ What if you
can’t use a real database in integration tests? 192

8.3 Integration testing: An example 193
What scenarios to test? 194 ■ Categorizing the database and
the message bus 195 ■ What about end-to-end testing? 195
Integration testing: The first try 196

8.4 Using interfaces to abstract dependencies 197
Interfaces and loose coupling 198 ■ Why use interfaces for
out-of-process dependencies? 199 ■ Using interfaces for in-process
dependencies 199

8.5 Integration testing best practices 200
Making domain model boundaries explicit 200 ■ Reducing the
number of layers 200 ■ Eliminating circular dependencies 202
Using multiple act sections in a test 204

8.6 How to test logging functionality 205
Should you test logging? 205 ■ How should you test
logging? 207 ■ How much logging is enough? 212
How do you pass around logger instances? 212

8.7 Conclusion 213

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

CONTENTSxii

9 Mocking best practices 216
9.1 Maximizing mocks’ value 217

Verifying interactions at the system edges 219 ■ Replacing mocks
with spies 222 ■ What about IDomainLogger? 224

9.2 Mocking best practices 225
Mocks are for integration tests only 225 ■ Not just one mock per
test 225 ■ Verifying the number of calls 226 ■ Only mock types
that you own 227

10 Testing the database 229
10.1 Prerequisites for testing the database 230

Keeping the database in the source control system 230 ■ Reference
data is part of the database schema 231 ■ Separate instance for
every developer 232 ■ State-based vs. migration-based database
delivery 232

10.2 Database transaction management 234
Managing database transactions in production code 235 ■ Managing
database transactions in integration tests 242

10.3 Test data life cycle 243
Parallel vs. sequential test execution 243 ■ Clearing data between
test runs 244 ■ Avoid in-memory databases 246

10.4 Reusing code in test sections 246
Reusing code in arrange sections 246 ■ Reusing code in
act sections 249 ■ Reusing code in assert sections 250
Does the test create too many database transactions? 251

10.5 Common database testing questions 252
Should you test reads? 252 ■ Should you test repositories? 253

10.6 Conclusion 254

PART 3 UNIT TESTING ANTI-PATTERNS.........................257

11 Unit testing anti-patterns 259
11.1 Unit testing private methods 260

Private methods and test fragility 260 ■ Private methods and
insufficient coverage 260 ■ When testing private methods is
acceptable 261

11.2 Exposing private state 263
11.3 Leaking domain knowledge to tests 264

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

CONTENTS xiii

11.4 Code pollution 266
11.5 Mocking concrete classes 268
11.6 Working with time 271

Time as an ambient context 271 ■ Time as an explicit
dependency 272

11.7 Conclusion 273

index 275

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

xiv

preface
I remember my first project where I tried out unit testing. It went relatively well; but after
it was finished, I looked at the tests and thought that a lot of them were a pure waste of
time. Most of my unit tests spent a great deal of time setting up expectations and wiring
up a complicated web of dependencies—all that, just to check that the three lines of
code in my controller were correct. I couldn’t pinpoint what exactly was wrong with the
tests, but my sense of proportion sent me unambiguous signals that something was off.

 Luckily, I didn’t abandon unit testing and continued applying it in subsequent
projects. However, disagreement with common (at that time) unit testing practices
has been growing in me ever since. Throughout the years, I’ve written a lot about unit
testing. In those writings, I finally managed to crystallize what exactly was wrong with
my first tests and generalized this knowledge to broader areas of unit testing. This
book is a culmination of all my research, trial, and error during that period—compiled,
refined, and distilled.

 I come from a mathematical background and strongly believe that guidelines in
programming, like theorems in math, should be derived from first principles. I’ve
tried to structure this book in a similar way: start with a blank slate by not jumping to
conclusions or throwing around unsubstantiated claims, and gradually build my case
from the ground up. Interestingly enough, once you establish such first principles,
guidelines and best practices often flow naturally as mere implications.

 I believe that unit testing is becoming a de facto requirement for software proj-
ects, and this book will give you everything you need to create valuable, highly main-
tainable tests.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

xv

acknowledgments
This book was a lot of work. Even though I was prepared mentally, it was still much
more work than I could ever have imagined.

 A big “thank you” to Sam Zaydel, Alessandro Campeis, Frances Buran, Tiffany
Taylor, and especially Marina Michaels, whose invaluable feedback helped shape the
book and made me a better writer along the way. Thanks also to everyone else at Man-
ning who worked on this book in production and behind the scenes.

 I’d also like to thank the reviewers who took the time to read my manuscript at var-
ious stages during its development and who provided valuable feedback: Aaron Barton,
Alessandro Campeis, Conor Redmond, Dror Helper, Greg Wright, Hemant Koneru,
Jeremy Lange, Jorge Ezequiel Bo, Jort Rodenburg, Mark Nenadov, Marko Umek,
Markus Matzker, Srihari Sridharan, Stephen John Warnett, Sumant Tambe, Tim van
Deurzen, and Vladimir Kuptsov.

 Above all, I would like to thank my wife Nina, who supported me during the whole
process.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

xvi

about this book
Unit Testing: Principles, Practices, and Patterns provides insights into the best practices
and common anti-patterns that surround the topic of unit testing. After reading this
book, armed with your newfound skills, you’ll have the knowledge needed to become
an expert at delivering successful projects that are easy to maintain and extend,
thanks to the tests you build along the way.

Who should read this book
Most online and print resources have one drawback: they focus on the basics of unit
testing but don’t go much beyond that. There’s a lot of value in such resources, but
the learning doesn’t end there. There’s a next level: not just writing tests, but doing it
in a way that gives you the best return on your efforts. When you reach this point on
the learning curve, you’re pretty much left to your own devices to figure out how to
get to the next level.

 This book takes you to that next level. It teaches a scientific, precise definition of
the ideal unit test. That definition provides a universal frame of reference, which will
help you look at many of your tests in a new light and see which of them contribute to
the project and which must be refactored or removed.

 If you don’t have much experience with unit testing, you’ll learn a lot from this book.
If you’re an experienced programmer, you most likely already understand some of the
ideas taught in this book. The book will help you articulate why the techniques and best
practices you’ve been using all along are so helpful. And don’t underestimate this skill:
the ability to clearly communicate your ideas to colleagues is priceless.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

ABOUT THIS BOOK xvii

How this book is organized: A roadmap
The book’s 11 chapters are divided into 4 parts. Part 1 introduces unit testing and
gives a refresher on some of the more generic unit testing principles:

■ Chapter 1 defines the goal of unit testing and gives an overview of how to differ-
entiate a good test from a bad one.

■ Chapter 2 explores the definition of unit test and discusses the two schools of
unit testing.

■ Chapter 3 provides a refresher on some basic topics, such as structuring of unit
tests, reusing test fixtures, and test parameterization.

Part 2 gets to the heart of the subject—it shows what makes a good unit test and pro-
vides details about how to refactor your tests toward being more valuable:

■ Chapter 4 defines the four pillars that form a good unit test and provide a com-
mon frame of reference that is used throughout the book.

■ Chapter 5 builds a case for mocks and explores their relation to test fragility.
■ Chapter 6 examines the three styles of unit testing, along with which of those

styles produces tests of the best quality and why.
■ Chapter 7 teaches you how to refactor away from bloated, overcomplicated

tests and achieve tests that provide maximum value with minimum mainte-
nance costs.

Part 3 explores the topic of integration testing:

■ Chapter 8 looks at integration testing in general along with its benefits and
trade-offs.

■ Chapter 9 discusses mocks and how to use them in a way that benefits your tests
the most.

■ Chapter 10 explores working with relational databases in tests.

Part 4’s chapter 11 covers common unit testing anti-patterns, some of which you’ve
possibly encountered before.

About the Code
The code samples are written in C#, but the topics they illustrate are applicable to any
object-oriented language, such as Java or C++. C# is just the language that I happen to
work with the most.

 I tried not to use any C#-specific language features, and I made the sample code as
simple as possible, so you shouldn’t have any trouble understanding it. You can down-
load all of the code samples online at www.manning.com/books/unit-testing.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

ABOUT THIS BOOKxviii

liveBook discussion forum
Purchase of Unit Testing: Principles, Practices, and Patterns includes free access to a private
web forum run by Manning Publications where you can make comments about the
book, ask technical questions, and receive help from the author and from other
users. To access the forum, go to https://livebook.manning.com/#!/book/unit-testing/
discussion. You can also learn more about Manning’s forums and the rules of conduct
at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

■ My blog is at EnterpriseCraftsmanship.com.
■ I also have an online course about unit testing (in the works, as of this writing),

which you can enroll in at UnitTestingCourse.com.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

xix

about the author
VLADIMIR KHORIKOV is a software engineer, Microsoft MVP, and Pluralsight author. He
has been professionally involved in software development for over 15 years, including
mentoring teams on the ins and outs of unit testing. During the past several years,
Vladimir has written several popular blog post series and an online training course on
the topic of unit testing. The biggest advantage of his teaching style, and the one stu-
dents often praise, is his tendency to have a strong theoretic background, which he
then applies to practical examples.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

xx

about the cover illustration
The figure on the cover of Unit Testing: Principles, Practices, and Patterns is captioned
“Esthinienne.” The illustration is taken from a collection of dress costumes from vari-
ous countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes Civils
Actuels de Tous les Peuples Connus, published in France in 1788. Each illustration is
finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s col-
lection reminds us vividly of how culturally apart the world’s towns and regions were
just 200 years ago. Isolated from each other, people spoke different dialects and lan-
guages. In the streets or in the countryside, it was easy to identify where they lived and
what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

Part 1

The bigger picture

This part of the book will get you up to speed with the current state of unit
testing. In chapter 1, I’ll define the goal of unit testing and give an overview of
how to differentiate a good test from a bad one. We’ll talk about coverage metrics
and discuss properties of a good unit test in general.

 In chapter 2, we’ll look at the definition of unit test. A seemingly minor dis-
agreement over this definition has led to the formation of two schools of unit test-
ing, which we’ll also dive into. Chapter 3 provides a refresher on some basic topics,
such as structuring of unit tests, reusing test fixtures, and test parametrization.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

3

The goal of unit testing

Learning unit testing doesn’t stop at mastering the technical bits of it, such as
your favorite test framework, mocking library, and so on. There’s much more to
unit testing than the act of writing tests. You always have to strive to achieve the
best return on the time you invest in unit testing, minimizing the effort you put
into tests and maximizing the benefits they provide. Achieving both things isn’t
an easy task.

 It’s fascinating to watch projects that have achieved this balance: they grow
effortlessly, don’t require much maintenance, and can quickly adapt to their cus-
tomers’ ever-changing needs. It’s equally frustrating to see projects that failed to do
so. Despite all the effort and an impressive number of unit tests, such projects drag
on slowly, with lots of bugs and upkeep costs.

This chapter covers
 The state of unit testing

 The goal of unit testing

 Consequences of having a bad test suite

 Using coverage metrics to measure test
suite quality

 Attributes of a successful test suite

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

4 CHAPTER 1 The goal of unit testing

 That’s the difference between various unit testing techniques. Some yield great
outcomes and help maintain software quality. Others don’t: they result in tests that
don’t contribute much, break often, and require a lot of maintenance in general.

 What you learn in this book will help you differentiate between good and bad unit
testing techniques. You’ll learn how to do a cost-benefit analysis of your tests and apply
proper testing techniques in your particular situation. You’ll also learn how to avoid
common anti-patterns—patterns that may make sense at first but lead to trouble down
the road.

 But let’s start with the basics. This chapter gives a quick overview of the state of
unit testing in the software industry, describes the goal behind writing and maintain-
ing tests, and provides you with the idea of what makes a test suite successful.

1.1 The current state of unit testing
For the past two decades, there’s been a push toward adopting unit testing. The push
has been so successful that unit testing is now considered mandatory in most compa-
nies. Most programmers practice unit testing and understand its importance. There’s
no longer any dispute as to whether you should do it. Unless you’re working on a
throwaway project, the answer is, yes, you do.

 When it comes to enterprise application development, almost every project
includes at least some unit tests. A significant percentage of such projects go far
beyond that: they achieve good code coverage with lots and lots of unit and integra-
tion tests. The ratio between the production code and the test code could be any-
where between 1:1 and 1:3 (for each line of production code, there are one to
three lines of test code). Sometimes, this ratio goes much higher than that, to a
whopping 1:10.

 But as with all new technologies, unit testing continues to evolve. The discussion
has shifted from “Should we write unit tests?” to “What does it mean to write good unit
tests?” This is where the main confusion still lies.

 You can see the results of this confusion in software projects. Many projects have
automated tests; they may even have a lot of them. But the existence of those tests
often doesn’t provide the results the developers hope for. It can still take program-
mers a lot of effort to make progress in such projects. New features take forever to
implement, new bugs constantly appear in the already implemented and accepted
functionality, and the unit tests that are supposed to help don’t seem to mitigate this
situation at all. They can even make it worse.

 It’s a horrible situation for anyone to be in—and it’s the result of having unit tests
that don’t do their job properly. The difference between good and bad tests is not
merely a matter of taste or personal preference, it’s a matter of succeeding or failing
at this critical project you’re working on.

 It’s hard to overestimate the importance of the discussion of what makes a good
unit test. Still, this discussion isn’t occurring much in the software development industry

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

5The goal of unit testing

today. You’ll find a few articles and conference talks online, but I’ve yet to see any
comprehensive material on this topic.

 The situation in books isn’t any better; most of them focus on the basics of unit
testing but don’t go much beyond that. Don’t get me wrong. There’s a lot of value in
such books, especially when you are just starting out with unit testing. However, the
learning doesn’t end with the basics. There’s a next level: not just writing tests, but
doing unit testing in a way that provides you with the best return on your efforts.
When you reach this point, most books pretty much leave you to your own devices to
figure out how to get to that next level.

 This book takes you there. It teaches a precise, scientific definition of the ideal
unit test. You’ll see how this definition can be applied to practical, real-world exam-
ples. My hope is that this book will help you understand why your particular project
may have gone sideways despite having a good number of tests, and how to correct its
course for the better.

 You’ll get the most value out of this book if you work in enterprise application
development, but the core ideas are applicable to any software project.

1.2 The goal of unit testing
Before taking a deep dive into the topic of unit testing, let’s step back and consider
the goal that unit testing helps you to achieve. It’s often said that unit testing practices
lead to a better design. And it’s true: the necessity to write unit tests for a code base
normally leads to a better design. But that’s not the main goal of unit testing; it’s
merely a pleasant side effect.

What is an enterprise application?
An enterprise application is an application that aims at automating or assisting an
organization’s inner processes. It can take many forms, but usually the characteris-
tics of an enterprise software are

 High business logic complexity
 Long project lifespan
 Moderate amounts of data
 Low or moderate performance requirements

The relationship between unit testing and code design
The ability to unit test a piece of code is a nice litmus test, but it only works in one
direction. It’s a good negative indicator—it points out poor-quality code with relatively
high accuracy. If you find that code is hard to unit test, it’s a strong sign that the code
needs improvement. The poor quality usually manifests itself in tight coupling, which
means different pieces of production code are not decoupled from each other
enough, and it’s hard to test them separately.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

6 CHAPTER 1 The goal of unit testing

What is the goal of unit testing, then? The goal is to enable sustainable growth of the
software project. The term sustainable is key. It’s quite easy to grow a project, especially
when you start from scratch. It’s much harder to sustain this growth over time.

 Figure 1.1 shows the growth dynamic of a typical project without tests. You start
off quickly because there’s nothing dragging you down. No bad architectural deci-
sions have been made yet, and there isn’t any existing code to worry about. As time
goes by, however, you have to put in more and more hours to make the same amount
of progress you showed at the beginning. Eventually, the development speed slows
down significantly, sometimes even to the point where you can’t make any progress
whatsoever.

This phenomenon of quickly decreasing development speed is also known as software
entropy. Entropy (the amount of disorder in a system) is a mathematical and scientific
concept that can also apply to software systems. (If you’re interested in the math and
science of entropy, look up the second law of thermodynamics.)

 In software, entropy manifests in the form of code that tends to deteriorate. Each
time you change something in a code base, the amount of disorder in it, or entropy,
increases. If left without proper care, such as constant cleaning and refactoring, the
system becomes increasingly complex and disorganized. Fixing one bug introduces
more bugs, and modifying one part of the software breaks several others—it’s like a

(continued)

Unfortunately, the ability to unit test a piece of code is a bad positive indicator. The
fact that you can easily unit test your code base doesn’t necessarily mean it’s of
good quality. The project can be a disaster even when it exhibits a high degree of
decoupling.

Without tests

With tests

Progress

hours

spent

Work

Figure 1.1 The difference in growth
dynamics between projects with and
without tests. A project without tests
has a head start but quickly slows down
to the point that it’s hard to make any
progress.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

7The goal of unit testing

domino effect. Eventually, the code base becomes unreliable. And worst of all, it’s
hard to bring it back to stability.

 Tests help overturn this tendency. They act as a safety net—a tool that provides
insurance against a vast majority of regressions. Tests help make sure the existing
functionality works, even after you introduce new features or refactor the code to bet-
ter fit new requirements.

DEFINITION A regression is when a feature stops working as intended after a cer-
tain event (usually, a code modification). The terms regression and software bug
are synonyms and can be used interchangeably.

The downside here is that tests require initial—sometimes significant—effort. But they
pay for themselves in the long run by helping the project to grow in the later stages.
Software development without the help of tests that constantly verify the code base
simply doesn’t scale.

 Sustainability and scalability are the keys. They allow you to maintain development
speed in the long run.

1.2.1 What makes a good or bad test?

Although unit testing helps maintain project growth, it’s not enough to just write tests.
Badly written tests still result in the same picture.

 As shown in figure 1.2, bad tests do help to slow down code deterioration at the
beginning: the decline in development speed is less prominent compared to the situa-
tion with no tests at all. But nothing really changes in the grand scheme of things. It
might take longer for such a project to enter the stagnation phase, but stagnation is
still inevitable.

Without tests

With good tests

With bad tests

Progress

Work

hours

spent

Figure 1.2 The difference in
growth dynamics between
projects with good and bad
tests. A project with badly
written tests exhibits the
properties of a project with
good tests at the beginning,
but it eventually falls into
the stagnation phase.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

8 CHAPTER 1 The goal of unit testing

Remember, not all tests are created equal. Some of them are valuable and contribute a lot
to overall software quality. Others don’t. They raise false alarms, don’t help you catch
regression errors, and are slow and difficult to maintain. It’s easy to fall into the trap
of writing unit tests for the sake of unit testing without a clear picture of whether it
helps the project.

 You can’t achieve the goal of unit testing by just throwing more tests at the project.
You need to consider both the test’s value and its upkeep cost. The cost component is
determined by the amount of time spent on various activities:

 Refactoring the test when you refactor the underlying code
 Running the test on each code change
 Dealing with false alarms raised by the test
 Spending time reading the test when you’re trying to understand how the

underlying code behaves

It’s easy to create tests whose net value is close to zero or even is negative due to high
maintenance costs. To enable sustainable project growth, you have to exclusively
focus on high-quality tests—those are the only type of tests that are worth keeping in
the test suite.

It’s crucial to learn how to differentiate between good and bad unit tests. I cover this
topic in chapter 4.

1.3 Using coverage metrics to measure test suite quality
In this section, I talk about the two most popular coverage metrics—code coverage
and branch coverage—how to calculate them, how they’re used, and problems with
them. I’ll show why it’s detrimental for programmers to aim at a particular coverage
number and why you can’t just rely on coverage metrics to determine the quality of
your test suite.

DEFINITION A coverage metric shows how much source code a test suite exe-
cutes, from none to 100%.

Production code vs. test code
People often think production code and test code are different. Tests are assumed
to be an addition to production code and have no cost of ownership. By extension,
people often believe that the more tests, the better. This isn’t the case. Code is a
liability, not an asset. The more code you introduce, the more you extend the surface
area for potential bugs in your software, and the higher the project’s upkeep cost. It’s
always better to solve problems with as little code as possible.

Tests are code, too. You should view them as the part of your code base that aims at
solving a particular problem: ensuring the application’s correctness. Unit tests, just
like any other code, are also vulnerable to bugs and require maintenance.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

9Using coverage metrics to measure test suite quality

There are different types of coverage metrics, and they’re often used to assess the
quality of a test suite. The common belief is that the higher the coverage number,
the better.

 Unfortunately, it’s not that simple, and coverage metrics, while providing valuable
feedback, can’t be used to effectively measure the quality of a test suite. It’s the same
situation as with the ability to unit test the code: coverage metrics are a good negative
indicator but a bad positive one.

 If a metric shows that there’s too little coverage in your code base—say, only 10%—
that’s a good indication that you are not testing enough. But the reverse isn’t true:
even 100% coverage isn’t a guarantee that you have a good-quality test suite. A test
suite that provides high coverage can still be of poor quality.

 I already touched on why this is so—you can’t just throw random tests at your
project with the hope those tests will improve the situation. But let’s discuss this
problem in detail with respect to the code coverage metric.

1.3.1 Understanding the code coverage metric

The first and most-used coverage metric is code coverage, also known as test coverage; see
figure 1.3. This metric shows the ratio of the number of code lines executed by at least
one test and the total number of lines in the production code base.

Let’s see an example to better understand how this works. Listing 1.1 shows an
IsStringLong method and a test that covers it. The method determines whether a
string provided to it as an input parameter is long (here, the definition of long is any
string with the length greater than five characters). The test exercises the method
using "abc" and checks that this string is not considered long.

public static bool IsStringLong(string input)
{

if (input.Length > 5)
return true;

return false;
}

Listing 1.1 A sample method partially covered by a test

Code coverage (test coverage) =
Total number of lines

Lines of code executed

Figure 1.3 The code coverage (test coverage) metric is
calculated as the ratio between the number of code lines
executed by the test suite and the total number of lines in
the production code base.

Covered
by the
test

Not
covered

by the
test

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

10 CHAPTER 1 The goal of unit testing

public void Test()
{

bool result = IsStringLong("abc");
Assert.Equal(false, result);

}

It’s easy to calculate the code coverage here. The total number of lines in the method
is five (curly braces count, too). The number of lines executed by the test is four—the
test goes through all the code lines except for the return true; statement. This gives
us 4/5 = 0.8 = 80% code coverage.

 Now, what if I refactor the method and inline the unnecessary if statement, like this?

public static bool IsStringLong(string input)
{

return input.Length > 5;
}

public void Test()
{

bool result = IsStringLong("abc");
Assert.Equal(false, result);

}

Does the code coverage number change? Yes, it does. Because the test now exercises
all three lines of code (the return statement plus two curly braces), the code coverage
increases to 100%.

 But did I improve the test suite with this refactoring? Of course not. I just shuffled the
code inside the method. The test still verifies the same number of possible outcomes.

 This simple example shows how easy it is to game the coverage numbers. The more
compact your code is, the better the test coverage metric becomes, because it only
accounts for the raw line numbers. At the same time, squashing more code into less
space doesn’t (and shouldn’t) change the value of the test suite or the maintainability
of the underlying code base.

1.3.2 Understanding the branch coverage metric

Another coverage metric is called branch coverage. Branch coverage provides more pre-
cise results than code coverage because it helps cope with code coverage’s shortcom-
ings. Instead of using the raw number of code lines, this metric focuses on control
structures, such as if and switch statements. It shows how many of such control struc-
tures are traversed by at least one test in the suite, as shown in figure 1.4.

Branch coverage =
Total number of branches

Branches traversed

Figure 1.4 The branch metric is calculated as the ratio of the
number of code branches exercised by the test suite and the
total number of branches in the production code base.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

11Using coverage metrics to measure test suite quality

To calculate the branch coverage metric, you need to sum up all possible branches in
your code base and see how many of them are visited by tests. Let’s take our previous
example again:

public static bool IsStringLong(string input)
{

return input.Length > 5;
}

public void Test()
{

bool result = IsStringLong("abc");
Assert.Equal(false, result);

}

There are two branches in the IsStringLong method: one for the situation when the
length of the string argument is greater than five characters, and the other one when
it’s not. The test covers only one of these branches, so the branch coverage metric is
1/2 = 0.5 = 50%. And it doesn’t matter how we represent the code under test—
whether we use an if statement as before or use the shorter notation. The branch cov-
erage metric only accounts for the number of branches; it doesn’t take into consider-
ation how many lines of code it took to implement those branches.

 Figure 1.5 shows a helpful way to visualize this metric. You can represent all pos-
sible paths the code under test can take as a graph and see how many of them have
been traversed. IsStringLong has two such paths, and the test exercises only one
of them.

Start

Length <= 5

End

Length > 5

Figure 1.5 The method IsStringLong represented as a graph of possible
code paths. Test covers only one of the two code paths, thus providing 50%
branch coverage.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

12 CHAPTER 1 The goal of unit testing

1.3.3 Problems with coverage metrics

Although the branch coverage metric yields better results than code coverage, you still
can’t rely on either of them to determine the quality of your test suite, for two reasons:

 You can’t guarantee that the test verifies all the possible outcomes of the system
under test.

 No coverage metric can take into account code paths in external libraries.

Let’s look more closely at each of these reasons.

YOU CAN’T GUARANTEE THAT THE TEST VERIFIES ALL THE POSSIBLE OUTCOMES

For the code paths to be actually tested and not just exercised, your unit tests must
have appropriate assertions. In other words, you need to check that the outcome the
system under test produces is the exact outcome you expect it to produce. Moreover,
this outcome may have several components; and for the coverage metrics to be mean-
ingful, you need to verify all of them.

 The next listing shows another version of the IsStringLong method. It records the
last result into a public WasLastStringLong property.

public static bool WasLastStringLong { get; private set; }

public static bool IsStringLong(string input)
{

bool result = input.Length > 5;
WasLastStringLong = result;
return result;

}

public void Test()
{

bool result = IsStringLong("abc");
Assert.Equal(false, result);

}

The IsStringLong method now has two outcomes: an explicit one, which is encoded
by the return value; and an implicit one, which is the new value of the property. And
in spite of not verifying the second, implicit outcome, the coverage metrics would still
show the same results: 100% for the code coverage and 50% for the branch coverage.
As you can see, the coverage metrics don’t guarantee that the underlying code is
tested, only that it has been executed at some point.

 An extreme version of this situation with partially tested outcomes is assertion-free
testing, which is when you write tests that don’t have any assertion statements in them
whatsoever. Here’s an example of assertion-free testing.

Listing 1.2 Version of IsStringLong that records the last result

First
outcome

Second
outcome

The test verifies only
the second outcome.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

13Using coverage metrics to measure test suite quality

public void Test()
{

bool result1 = IsStringLong("abc");
bool result2 = IsStringLong("abcdef");

}

This test has both code and branch coverage metrics showing 100%. But at the same
time, it is completely useless because it doesn’t verify anything.

But let’s say that you thoroughly verify each outcome of the code under test. Does this,
in combination with the branch coverage metric, provide a reliable mechanism, which
you can use to determine the quality of your test suite? Unfortunately, no.

Listing 1.3 A test with no assertions always passes.

A story from the trenches
The concept of assertion-free testing might look like a dumb idea, but it does happen
in the wild.

Years ago, I worked on a project where management imposed a strict requirement of
having 100% code coverage for every project under development. This initiative had
noble intentions. It was during the time when unit testing wasn’t as prevalent as it is
today. Few people in the organization practiced it, and even fewer did unit testing
consistently.

A group of developers had gone to a conference where many talks were devoted to
unit testing. After returning, they decided to put their new knowledge into practice.
Upper management supported them, and the great conversion to better programming
techniques began. Internal presentations were given. New tools were installed. And,
more importantly, a new company-wide rule was imposed: all development teams had
to focus on writing tests exclusively until they reached the 100% code coverage mark.
After they reached this goal, any code check-in that lowered the metric had to be
rejected by the build systems.

As you might guess, this didn’t play out well. Crushed by this severe limitation, devel-
opers started to seek ways to game the system. Naturally, many of them came to the
same realization: if you wrap all tests with try/catch blocks and don’t introduce any
assertions in them, those tests are guaranteed to pass. People started to mindlessly
create tests for the sake of meeting the mandatory 100% coverage requirement.
Needless to say, those tests didn’t add any value to the projects. Moreover, they
damaged the projects because of all the effort and time they steered away from pro-
ductive activities, and because of the upkeep costs required to maintain the tests
moving forward.

Eventually, the requirement was lowered to 90% and then to 80%; after some period
of time, it was retracted altogether (for the better!).

Returns true

Returns false

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

14 CHAPTER 1 The goal of unit testing

NO COVERAGE METRIC CAN TAKE INTO ACCOUNT CODE PATHS IN EXTERNAL LIBRARIES

The second problem with all coverage metrics is that they don’t take into account
code paths that external libraries go through when the system under test calls meth-
ods on them. Let’s take the following example:

public static int Parse(string input)
{

return int.Parse(input);
}

public void Test()
{

int result = Parse("5");
Assert.Equal(5, result);

}

The branch coverage metric shows 100%, and the test verifies all components of the
method’s outcome. It has a single such component anyway—the return value. At the
same time, this test is nowhere near being exhaustive. It doesn’t take into account
the code paths the .NET Framework’s int.Parse method may go through. And
there are quite a number of code paths, even in this simple method, as you can see
in figure 1.6.

The built-in integer type has plenty of branches that are hidden from the test and
that might lead to different results, should you change the method’s input parameter.
Here are just a few possible arguments that can’t be transformed into an integer:

 Null value
 An empty string
 “Not an int”
 A string that’s too large

Hidden
part

Start

int.Parse

null “ ” “5” “not an int”

End

Figure 1.6 Hidden code paths of external libraries. Coverage metrics have no way to see how
many of them there are and how many of them your tests exercise.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

15What makes a successful test suite?

You can fall into numerous edge cases, and there’s no way to see if your tests account
for all of them.

 This is not to say that coverage metrics should take into account code paths in
external libraries (they shouldn’t), but rather to show you that you can’t rely on
those metrics to see how good or bad your unit tests are. Coverage metrics can’t
possibly tell whether your tests are exhaustive; nor can they say if you have enough
tests.

1.3.4 Aiming at a particular coverage number

At this point, I hope you can see that relying on coverage metrics to determine the
quality of your test suite is not enough. It can also lead to dangerous territory if you
start making a specific coverage number a target, be it 100%, 90%, or even a moder-
ate 70%. The best way to view a coverage metric is as an indicator, not a goal in and
of itself.

 Think of a patient in a hospital. Their high temperature might indicate a fever and
is a helpful observation. But the hospital shouldn’t make the proper temperature of
this patient a goal to target by any means necessary. Otherwise, the hospital might end
up with the quick and “efficient” solution of installing an air conditioner next to the
patient and regulating their temperature by adjusting the amount of cold air flowing
onto their skin. Of course, this approach doesn’t make any sense.

 Likewise, targeting a specific coverage number creates a perverse incentive that
goes against the goal of unit testing. Instead of focusing on testing the things that
matter, people start to seek ways to attain this artificial target. Proper unit testing is dif-
ficult enough already. Imposing a mandatory coverage number only distracts develop-
ers from being mindful about what they test, and makes proper unit testing even
harder to achieve.

TIP It’s good to have a high level of coverage in core parts of your system.
It’s bad to make this high level a requirement. The difference is subtle but
critical.

Let me repeat myself: coverage metrics are a good negative indicator, but a bad posi-
tive one. Low coverage numbers—say, below 60%—are a certain sign of trouble. They
mean there’s a lot of untested code in your code base. But high numbers don’t mean
anything. Thus, measuring the code coverage should be only a first step on the way to
a quality test suite.

1.4 What makes a successful test suite?
I’ve spent most of this chapter discussing improper ways to measure the quality of a
test suite: using coverage metrics. What about a proper way? How should you mea-
sure your test suite’s quality? The only reliable way is to evaluate each test in the
suite individually, one by one. Of course, you don’t have to evaluate all of them at

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

16 CHAPTER 1 The goal of unit testing

once; that could be quite a large undertaking and require significant upfront effort.
You can perform this evaluation gradually. The point is that there’s no automated
way to see how good your test suite is. You have to apply your personal judgment.

 Let’s look at a broader picture of what makes a test suite successful as a whole.
(We’ll dive into the specifics of differentiating between good and bad tests in chapter 4.)
A successful test suite has the following properties:

 It’s integrated into the development cycle.
 It targets only the most important parts of your code base.
 It provides maximum value with minimum maintenance costs.

1.4.1 It’s integrated into the development cycle

The only point in having automated tests is if you constantly use them. All tests should
be integrated into the development cycle. Ideally, you should execute them on every
code change, even the smallest one.

1.4.2 It targets only the most important parts of your code base

Just as all tests are not created equal, not all parts of your code base are worth the
same attention in terms of unit testing. The value the tests provide is not only in how
those tests themselves are structured, but also in the code they verify.

 It’s important to direct your unit testing efforts to the most critical parts of the sys-
tem and verify the others only briefly or indirectly. In most applications, the most
important part is the part that contains business logic—the domain model.1 Testing
business logic gives you the best return on your time investment.

 All other parts can be divided into three categories:

 Infrastructure code
 External services and dependencies, such as the database and third-party systems
 Code that glues everything together

Some of these other parts may still need thorough unit testing, though. For example,
the infrastructure code may contain complex and important algorithms, so it would
make sense to cover them with a lot of tests, too. But in general, most of your attention
should be spent on the domain model.

 Some of your tests, such as integration tests, can go beyond the domain model and
verify how the system works as a whole, including the noncritical parts of the code
base. And that’s fine. But the focus should remain on the domain model.

 Note that in order to follow this guideline, you should isolate the domain model
from the non-essential parts of the code base. You have to keep the domain model
separated from all other application concerns so you can focus your unit testing

1 See Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans (Addison-Wesley, 2003).

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

17What you will learn in this book

efforts on that domain model exclusively. We talk about all this in detail in part 2 of
the book.

1.4.3 It provides maximum value with minimum maintenance costs

The most difficult part of unit testing is achieving maximum value with minimum
maintenance costs. That’s the main focus of this book.

 It’s not enough to incorporate tests into a build system, and it’s not enough to
maintain high test coverage of the domain model. It’s also crucial to keep in the suite
only the tests whose value exceeds their upkeep costs by a good margin.

 This last attribute can be divided in two:

 Recognizing a valuable test (and, by extension, a test of low value)
 Writing a valuable test

Although these skills may seem similar, they’re different by nature. To recognize a test
of high value, you need a frame of reference. On the other hand, writing a valuable
test requires you to also know code design techniques. Unit tests and the underlying
code are highly intertwined, and it’s impossible to create valuable tests without put-
ting significant effort into the code base they cover.

 You can view it as the difference between recognizing a good song and being able
to compose one. The amount of effort required to become a composer is asymmetri-
cally larger than the effort required to differentiate between good and bad music. The
same is true for unit tests. Writing a new test requires more effort than examining an
existing one, mostly because you don’t write tests in a vacuum: you have to take into
account the underlying code. And so although I focus on unit tests, I also devote a sig-
nificant portion of this book to discussing code design.

1.5 What you will learn in this book
This book teaches a frame of reference that you can use to analyze any test in your test
suite. This frame of reference is foundational. After learning it, you’ll be able to look
at many of your tests in a new light and see which of them contribute to the project
and which must be refactored or gotten rid of altogether.

 After setting this stage (chapter 4), the book analyzes the existing unit testing tech-
niques and practices (chapters 4–6, and part of 7). It doesn’t matter whether you’re
familiar with those techniques and practices. If you are familiar with them, you’ll see
them from a new angle. Most likely, you already get them at the intuitive level. This
book can help you articulate why the techniques and best practices you’ve been using
all along are so helpful.

 Don’t underestimate this skill. The ability to clearly communicate your ideas to col-
leagues is priceless. A software developer—even a great one—rarely gets full credit for
a design decision if they can’t explain why, exactly, that decision was made. This book
can help you transform your knowledge from the realm of the unconscious to some-
thing you are able to talk about with anyone.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

18 CHAPTER 1 The goal of unit testing

 If you don’t have much experience with unit testing techniques and best practices,
you’ll learn a lot. In addition to the frame of reference that you can use to analyze any
test in a test suite, the book teaches

 How to refactor the test suite along with the production code it covers
 How to apply different styles of unit testing
 Using integration tests to verify the behavior of the system as a whole
 Identifying and avoiding anti-patterns in unit tests

In addition to unit tests, this book covers the entire topic of automated testing, so
you’ll also learn about integration and end-to-end tests.

 I use C# and .NET in my code samples, but you don’t have to be a C# professional
to read this book; C# is just the language that I happen to work with the most. All
the concepts I talk about are non-language-specific and can be applied to any other
object-oriented language, such as Java or C++.

Summary
 Code tends to deteriorate. Each time you change something in a code base, the

amount of disorder in it, or entropy, increases. Without proper care, such as
constant cleaning and refactoring, the system becomes increasingly complex
and disorganized. Tests help overturn this tendency. They act as a safety net— a
tool that provides insurance against the vast majority of regressions.

 It’s important to write unit tests. It’s equally important to write good unit tests.
The end result for projects with bad tests or no tests is the same: either stagna-
tion or a lot of regressions with every new release.

 The goal of unit testing is to enable sustainable growth of the software project.
A good unit test suite helps avoid the stagnation phase and maintain the devel-
opment pace over time. With such a suite, you’re confident that your changes
won’t lead to regressions. This, in turn, makes it easier to refactor the code or
add new features.

 All tests are not created equal. Each test has a cost and a benefit component,
and you need to carefully weigh one against the other. Keep only tests of posi-
tive net value in the suite, and get rid of all others. Both the application code
and the test code are liabilities, not assets.

 The ability to unit test code is a good litmus test, but it only works in one direc-
tion. It’s a good negative indicator (if you can’t unit test the code, it’s of poor
quality) but a bad positive one (the ability to unit test the code doesn’t guaran-
tee its quality).

 Likewise, coverage metrics are a good negative indicator but a bad positive one.
Low coverage numbers are a certain sign of trouble, but a high coverage num-
ber doesn’t automatically mean your test suite is of high quality.

 Branch coverage provides better insight into the completeness of the test suite
but still can’t indicate whether the suite is good enough. It doesn’t take into

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

19Summary

account the presence of assertions, and it can’t account for code paths in third-
party libraries that your code base uses.

 Imposing a particular coverage number creates a perverse incentive. It’s good
to have a high level of coverage in core parts of your system, but it’s bad to make
this high level a requirement.

 A successful test suite exhibits the following attributes:
– It is integrated into the development cycle.
– It targets only the most important parts of your code base.
– It provides maximum value with minimum maintenance costs.

 The only way to achieve the goal of unit testing (that is, enabling sustainable
project growth) is to
– Learn how to differentiate between a good and a bad test.
– Be able to refactor a test to make it more valuable.

Licensed to Vladimir Khorikov <vladimir.khorikov@gmail.com>

